250x250
Notice
Recent Posts
Recent Comments
Link
코딩걸음마
[딥러닝] Pytorch binary_Classification 이진분류 예측모델 템플릿 본문
728x90
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
df = pd.read_csv("경로/경로/파일명.csv")
df
target = df[['']].copy()
data = df.copy()
del data['']
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
data = torch.from_numpy(df.values).float()
data.shape
데이터와 target의 분류
x = data[:,:-]
y = data[:,:]
print(x.shape, y.shape)
Train / Valid / Test ratio 분리 비율 결정
ratios = [.6, .2, .2]
train_cnt = int(data.size(0) * ratios[0])
valid_cnt = int(data.size(0) * ratios[1])
test_cnt = data.size(0) - train_cnt - valid_cnt
cnts = [train_cnt, valid_cnt, test_cnt]
print("Train %d / Valid %d / Test %d samples." % (train_cnt, valid_cnt, test_cnt))
indices = torch.randperm(data.size(0))
x = torch.index_select(x, dim=0, index=indices)
y = torch.index_select(y, dim=0, index=indices)
x = x.split(cnts, dim=0)
y = y.split(cnts, dim=0)
for x_i, y_i in zip(x, y):
print(x_i.size(), y_i.size())
scaler = StandardScaler()
scaler.fit(x[0].numpy())
x = [torch.from_numpy(scaler.transform(x[0].numpy())).float(),
torch.from_numpy(scaler.transform(x[1].numpy())).float(),
torch.from_numpy(scaler.transform(x[2].numpy())).float()]
df = pd.DataFrame(x[0].numpy(), columns=cancer.feature_names)
df.tail()
모델 설정
model = nn.Sequential(
nn.Linear(x[0].size(-1), 25),
nn.LeakyReLU(),
nn.Linear(25, 20),
nn.LeakyReLU(),
nn.Linear(20, 15),
nn.LeakyReLU(),
nn.Linear(15, 10),
nn.LeakyReLU(),
nn.Linear(10, 5),
nn.LeakyReLU(),
nn.Linear(5, y[0].size(-1)),
nn.Sigmoid(),
)
model
optimizer = optim.Adam(model.parameters())
n_epochs = 10000
batch_size = 32
print_interval = 100
early_stop = 1000
from copy import deepcopy
lowest_loss = np.inf
best_model = None
lowest_epoch = np.inf
train_history, valid_history = [], []
for i in range(n_epochs):
indices = torch.randperm(x[0].size(0))
x_ = torch.index_select(x[0], dim=0, index=indices)
y_ = torch.index_select(y[0], dim=0, index=indices)
x_ = x_.split(batch_size, dim=0)
y_ = y_.split(batch_size, dim=0)
train_loss, valid_loss = 0, 0
y_hat = []
for x_i, y_i in zip(x_, y_):
y_hat_i = model(x_i)
loss = F.binary_cross_entropy(y_hat_i, y_i)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += float(loss) # This is very important to prevent memory leak.
train_loss = train_loss / len(x_)
with torch.no_grad():
x_ = x[1].split(batch_size, dim=0)
y_ = y[1].split(batch_size, dim=0)
valid_loss = 0
for x_i, y_i in zip(x_, y_):
y_hat_i = model(x_i)
loss = F.binary_cross_entropy(y_hat_i, y_i)
valid_loss += float(loss)
y_hat += [y_hat_i]
valid_loss = valid_loss / len(x_)
train_history += [train_loss]
valid_history += [valid_loss]
if (i + 1) % print_interval == 0:
print('Epoch %d: train loss=%.4e valid_loss=%.4e lowest_loss=%.4e' % (
i + 1,
train_loss,
valid_loss,
lowest_loss,
))
if valid_loss <= lowest_loss:
lowest_loss = valid_loss
lowest_epoch = i
best_model = deepcopy(model.state_dict())
else:
if early_stop > 0 and lowest_epoch + early_stop < i + 1:
print("There is no improvement during last %d epochs." % early_stop)
break
print("The best validation loss from epoch %d: %.4e" % (lowest_epoch + 1, lowest_loss))
model.load_state_dict(best_model)
시각화
plot_from = 2
plt.figure(figsize=(20, 10))
plt.grid(True)
plt.title("Train / Valid Loss History")
plt.plot(
range(plot_from, len(train_history)), train_history[plot_from:],
range(plot_from, len(valid_history)), valid_history[plot_from:],
)
plt.yscale('log')
plt.show()
결과보기
test_loss = 0
y_hat = []
with torch.no_grad():
x_ = x[2].split(batch_size, dim=0)
y_ = y[2].split(batch_size, dim=0)
for x_i, y_i in zip(x_, y_):
y_hat_i = model(x_i)
loss = F.binary_cross_entropy(y_hat_i, y_i)
test_loss += loss # Gradient is already detached.
y_hat += [y_hat_i]
test_loss = test_loss / len(x_)
y_hat = torch.cat(y_hat, dim=0)
print("Test loss: %.4e" % test_loss)
correct_cnt = (y[2] == (y_hat > .5)).sum()
total_cnt = float(y[2].size(0))
print('Test Accuracy: %.4f' % (correct_cnt / total_cnt))
df = pd.DataFrame(torch.cat([y[2], y_hat], dim=1).detach().numpy(),
columns=["y", "y_hat"])
sns.histplot(df, x='y_hat', hue='y', bins=50, stat='probability')
plt.show()
from sklearn.metrics import roc_auc_score
roc_auc_score(df.values[:, 0], df.values[:, 1])
728x90
'딥러닝 템플릿' 카테고리의 다른 글
[딥러닝] TensorFlow Regression 회귀 예측모델 템플릿 (0) | 2022.07.01 |
---|---|
[딥러닝] TensorFlow Classification 분류 예측모델 템플릿 (0) | 2022.07.01 |
Comments