일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 추천시스템
- 선형회귀
- 프로그래머스
- python
- 주식매매
- Linear
- 연습
- Regression
- 크롤링
- 흐름도
- 코딩테스트
- DeepLearning
- 딥러닝
- 게임
- 머신러닝
- 알고리즘
- 파이썬
- API
- 주가예측
- CLI
- 재귀함수
- 주식연습
- 회귀
- 가격맞히기
- 템플릿
- PyTorch
- 코딩
- tensorflow
- 주식
- 기초
- Today
- Total
목록딥러닝_TensorFlow (3)
코딩걸음마
Titanic 데이터를 활용하여 TensorFlow 의 모델 save와 load 방법을 알아봅시다. save와 load 방법을 알아보기 위해 기본적인 딥러닝 모델 플로우를 작성하겠습니다. import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import model_selection, preprocessing import seaborn as sns 데이터 불러오기 titanic_df = pd.read_csv("titanic_modified.csv") titanic_target = titanic_df[['Survived']].copy() titanic_data = titanic_df.copy() del titan..
이번엔 회귀모델이 아니라 텐서플로우를 활용하여 딥러닝 분류를 알아봅시다. 다음의 이미지를 봅시다. 사람은 이 그림이 5라는 것을 당연하게 빠르게 답변할 수 있습니다. 하지만 컴퓨터는 알아내지 못한다. 그렇다면 컴퓨터는 어떻게 보일까요? 컴퓨터는 하얀부분을 255 검은부분을 0이라는 규칙을 가지고 0~255사이의 값을 가진 Data로 표현됩니다. 즉 , 하나의 그림 안은 28개 열과, 28개 행의 Data 즉, 784개의 Data의 vector(지금은 Matrix)라고 표현할 수 있습니다. 1. 데이터 준비 우선 data를 불러옵시다. import tensorflow as tf from tensorflow.keras import datasets, models, layers, utils, losses imp..
딥러닝 기법을 다루기 위한 텐서플로우 기초를 다뤄보기 위해 tf.version 1부터 알아보자 import tensorflow.compat.v1 as tf #compatablity tf.disable_v2_behavior() import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets tf.add(a, b) 는 a+b를 출력하는 함수입니다. a =tf.add(3,5) a 그럼 다음 코드의 결과를 봅시다. 3 + 5 의 결과로 0을 반환했습니다 왜 그러는걸까요? 연산만 입력을 했지, 가동(run)하지 않았기 때문입니다 tf.Session 클래스의 객체로 sess를 선언하고 실행시켜봅시다. ..